Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints

نویسندگان

  • René Henrion
  • Werner Römisch
چکیده

We study perturbations of a stochastic program with a probabilistic constraint and r-concave original probability distribution. First we improve our earlier results substantially and provide conditions implying Hölder continuity properties of the solution sets w.r.t. the Kolmogorov distance of probability distributions. Secondly, we derive an upper Lipschitz continuity property for solution sets under more restrictive conditions on the original program and on the perturbed probability measures. The latter analysis applies to linear-quadratic models and is based on work by Bonnans and Shapiro. The stability results are illustrated by numerical tests showing the different asymptotic behaviour of parametric and nonparametric estimates in a program with a normal probabilistic constraint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz and Hölder stability of optimization problems and generalized equations

This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lipschitz and upper Hölder type, respectively, hold. Furthermore, we apply the ...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

Metric regularity and quantitative stability in stochastic programs with probabilistic constraints

Necessary and su cient conditions for metric regularity of several joint probabilistic constraints are derived using recent results from nonsmooth analysis The conditions apply to fairly general nonconvex nonsmooth probabilistic constraints and extend earlier work in this direction Further a veri able su cient condition for quadratic growth of the objective function in a more speci c convex sto...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Metric regularity and quantitative stability in stochastic programs with probabilistic constraints

Introducing probabilistic constraints leads in general to nonconvex, nonsmooth or even discontinuous optimization models. In this paper, necessary and sufficient conditions for metric regularity of (several joint) probabilistic constraints are derived using recent results from nonsmooth analysis. The conditions apply to fairly general constraints and extend earlier work in this direction. Furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2004